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Introduction

The Arctic region (Fig. 1) is a tectonically interesting area

with complex crust and upper mantle structure. Surrounded by

continental shelves with the East Siberian Shelf, Laptev Shelf, Kara

Shelf and Beaufort Shelf on its east side, and the Chukchi Shelf,

Beaufort Shelf and Greenland on its west side, the crust beneath

the Arctic Ocean floor is composed of oceanic basins and mid-

ocean ridge systems. These oceanic basins, including the Canada

Basin, Makarov Basin, Fram Basin and Nansen Basin, are observed

in near-parallel positions across the Arctic Ocean and are

separated by the Alpha Ridge, Lomonosov Ridge and Nansen-

Gakkel Ridge.

In spite of the difficulties in exploring the Arctic area in

detail, generalized tectonic histories have been proposed by many

researchers (Mair and Forsyth, 1982; Sweeney, Weber and Blascco,

1982; Fugita and Newberry, 1982; Harland, 1973; Sweeney,

Irving and Gener, 1978). In their studies, it is suggested that the

Canada Basin may have formed 125-190 m.y. ago by a

counterclockwise rotation of Arctic Alaska away from the

Canadian Arctic Islands. The flanking Alpha and Lomonosov

ridges may originally have been part of the same continental

block and were separated by continental stretching rather than

simple sea floor spreading to form the Makarov Basin. This

continental block was sheared from Eurasia along a Trans-Arctic



left-lateral shear zone in late Cretaceous which was related to the

opening of the Canada Basin, and was separated from Eurasia

when the North Atlantic rift system extended to the Arctic region

during Early Tertiary time. On the other hand, the Fram Basin and

Nansen Basin may have formed about 70 m.y. ago by sea floor

spreading along the Nansen-Gakkel Ridge with the opening of the

North Atlantic. These studies also suggested that the East Siberian

Sea may be floored by oceanic crust left by an incomplete closure

between the Arctic Alaska, Siberia, and Omolon.

A number of geophysical studies have investigated the

structures of the Arctic by means of gravity, geothermal,

geomagnetic, seismic reflection and refraction profiling, and

surface wave dispersion methods (Johnson and Sweeney, 1982;

Chan and Mitchell, 1985). But a detailed crust and upper mantle

study of this region as a whole has not been completed. Strong

lateral heterogeneity in this region is not only suggested by its

tectonic complexity, but also demonstrated by seismological

observations. In an earlier study, Zeng et al. (1986) have found

remarkable focusing and defocusing effects of surface waves

propagating across this region. In order to improve our

understanding of Arctic tectonics and to provide an overall

quantitative description for the lateral heterogeneity properties,

we have conducted a detailed Rayleigh wave group velocity

dispersion study for the Arctic region.
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In this surface wave dispersion study, we have used the

Rayleigh wave data for earthquakes from Alaska, Aleutian Islands

and Northeast Siberia recorded at the WWSSN stations around the

Arctic. Using the surface wave dispersion method introduced

earlier (Feng and Teng, 1983b), we divided our study into three

steps. First, we measured the mixed-path Rayleigh wave group

velocity from hand digitized seismograms by a matched-filtering

process. Wc then divided the region of interest into smaller

subdivisions in which lateral homogeneity is assumed, and

determined pure-path group velocities for these subdivisions from

the mixed-path measurement by a stochastic inversion method.

Third, we obtained the vertical shear wave velocity structure from

the pure-path data for each subdivision. Following these steps, we

studied the lateral variations of the Arctic crustal and upper

mantle structure and tried to interpret the variations in terms of

tectonic evolution in this region. In addition, we have computed

Gaussian beam synthetics for surface wave propagation across the

Arctic region using our inversion result. The synthetic

seismograms were then compared with the observed seismograms

to test the validity of the Arctic crust and upper mantle model

obtained from the inversion.

Data Acguisition and Analysis

To obtain the long-period Rayleigh waves with paths across

the Arctic region, we searched the earthquake catalog for all
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events above 50 degrees north latitude with magnitude from 5.5

to 6.5 mainly during the period from 1979 to 1985. A total of 118

events were found. Among these events, we eliminated ones with

poor signal-to-noise ratio and redundant path coverage.

Seismograms of these events recorded at the WWSSN stations (see

Table 1) were obtained from the film chips. The selected events

are listed in Table 2, from which 102 seismograms were chosen

for hand digitization. A typical example of these seismograms is

shown in Figure 2a, which was recorded at station COP for an

event some 8,000 km away. The beating of this wave train

suggests strong lateral heterogeneity along the path.

The hand digitized seismograms were then corrected for the

instrument response according to Hagiwara (1958), in which the

coupling effect between seismometer and galvanometer is

neglected. These corrected seismograms were used in the

matched-filtering process (Feng and Teng, 1983a) to obtain the

group arrival times. In this matched-filtering process, we first

used the display-equalized filtering process (Nyman and

Landisman, 1977) to obtain our preliminary group arrival time,

and then we used these preliminary results to obtain the optimal

filter parameters for the optimal bandwidth filtering process

(Inston etal., 1971; Cara, 1973; Feng and Teng, 1983). The final

group arrival times were used in the mixed path group velocity

calculations. The correction for the source delay was not applied

since its effects are small in view of the magnitudes of events and
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epicentral distances used in this study. A sample of the dispersion

curve is shown in Fig. 2b for the seismogram shown in Fig 2a.

According to the results of the matched-filtering process, we

further sorted our seismograms by deleting data sets with large

scatter in the group velocity measurements. A total of 74 wave

paths with good group velocity measurements and proper path

coverage over the Arctic region were finally selected from the 102

seismograms (see Table 3). The Arctic region was then subdivided

into 24 region grids, each of an area of 5 to 10 degrees in

dimension (Fig. 3a). Within each region grid lateral homogeneity

is assumed. These region grids were made on a rotated world

map with pole located at zero latitude and longitude. We have

divided these grids based on both the Arctic tectonic features and

our selected ray path coverage. For instance, we defined the grids

so that they are mainly ,omposed of either oceanic path or

continental path, and we made the mesh size larger in the region

with relatively poorer path coverage. Map views of both the grids

and Rayleigh wave ray path coverage are shown in Fig. 3a and 3b,

respectively.

The stochastic inversion technique (Franklin, 1970) was

used to determine the pure path group velocities for our regional

subdivision according to the formula

t i(0))=j- Dij / Uj((0))
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where ti is the group arrival time for path i ;It frequency c, Dij is

the distance of path i contained in grid j. and UL(o) is the pure path

group velocity for grid j. To carry out the stochastic inversion, we

first performed a simple least squares inversion to estimate the

parameters needed for stochastic inversion, such as the noise

variance, the model variance and the average inverse group

velocity. The noise variance was estimated as the sum of squares

of time residuals for each path divided by the number of degrees

of freedom. The model variance was estimated as the mean

square of the inverse pure path group velocity minus their

average value. The initial value of group velocity for the

stochastic inversion is taken as the average value from this least

squares inversion. These parameters were then used in the

standard procedure of the stochastic inversion to obtain final

pure-path group velocities.

Examples of the resolution matrix and covariance matrix of

the stochastic inversion are shown in Fig. 4a and Fig. 4b. In these

plots, the line interval is I for the resolution matrix plot and

O.OIx(U- 1 )2 for the variance matrix plot. These plots correspond

to the period of 41.58 sec. The root mean square residual time for

this period is 30.3 sec. Table 4 listed the standard error of the

pure-path group velocity for this period. From Table 4, we see

that the average standard error for this period is around 0.1

km/sec. According to the empirical equation of Knopoff and

Schwab (1968), the error due to source delay should be less than
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0.02 km/s for the epicentral distance range in our study. The

group velocity measurement error introduced from the matched-

filtering process should be less than 0.02 km/s (Feng and Teng,

1983a). Taking the values of 3.5 sec for travel time error due to

epicentral determination, 1.5 sec for origin time error, 1.75 sec for

finiteness error and 2.0 sec for digitization errors (Chan and

Mitchell, 1985), and calculating the group velocity errors due to

each source by using the relation given by Forsyth (1975)

AUe Ei U 2 1 D

where A U. is the group velocity error due to Ei, Ei is the time

error due to source i, U is the group velocity, and D is the

epicentral distance, a total error of 0.02 km/sec was estimated for

the group velocity of 3.6 km/sec and epicentral distance of 4000

km. Thus an error of 0.05 km/sec was obtained for all the sources

indicated above. Comparing this value with the average standard

error obtained from our stochastic inversion, a difference of 0.05

km/sec in the error was unexplained. We suspect that this

additional error was introduced from our regionalization modeling

and great circle path assumption for the Rayleigh wave

propagation.

Finally, our pure path results were used for the layered

shear wave velocity structure inversion for each region grid. To

avoid any artificial features introduced from the initial model, we
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have decided to use the same model as our initial model for all

blocks. This model was obtained by averaging some continental

and oceanic shear wave models from earlier studies (Feng and

Teng, 1983b; Yu and Mitchell, 1979; Seneff, 1978: Kanamori and

Abe, 1968; Harkrider and Anderson, 1966). The generalized

inversion method is used for our shear wave velocity modeling

study. The program we have used for ,he inversion was modified

from the one originally written by Harkrider and later modified

by Rodi. This program used a surface wave algorithm formulated

by Harkrider (1964) and a method for computing group velocity

partial derivatives given by Rodi et al. (1975).

Results and Discussion

The pure path group velocity models obtained from our

stochastic inversion were contoured in Fig. 5a and Fig. 5b for

periods of 19.9 sec and 41.6 sec respectively. The contour interval

is 0.09 km/sec. In the contour plot for 19.9 sec (Fig. 5a), we see

high group velocities for the oceanic blocks and low group

velocities for the continental shelves. This phenomenon is

generally expected at short periods. A close examination of this

plot reveals a relatively lower group velocity for the Canada Basin

and Alpha Ridge. These features are consistent with previous

findings that the Canada Basin is the oldest Basin in the Arctic

ocean with a thick layer of sediments and that Alpha Ridge in

general has a crust of continental structure (Mair and Forsyth,
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1982; Vogt et al., 1982; Kovacs et al., 1982). From the contour

plot for 41.6 sec period (Fig. 5b), a relatively higher group velocity

contour was found for grid 13. This grid includes Alpha Ridge,

Makarov Basin and a portion of Lomonosov Ridge. Since a longer

period surface wave samples a deeper portion of the earth, it

indicates a high velocity layer located under this grid in the upper

mantle. We will come back to this point shortly.

Before we interpret the shear wave velocity models

obtained in the previous section, we would like to first address the

resolution kernels associated with our starting model at several

depth ranges. Figure 6 is a plot of the resolution kernels. Since

we used the same starting model and period range, the resolution

kernel is basically the same for all grids. This resolution kernel

shows the best resolution provided by our data for depths ranging

from 10 to 50 km. The peak of the resolution kernel decreases

and the width increases with increasing depth, indicating

deteriorating resolution with depth. The resolution is also poor at

shallow depths above 3 to 5 km for lack of short-period data. So

we will limit our discussion to the depth range between 5 and 250

k m.

According to Sweeny oral. (1982), the Moho in the Arctic

ocean was defined by a ' wave velocity change from 6.6 to 8.3

km/sec. Following Nafe's (1970) empirical relation, this change

corresponds to a S wave velocity change frorn 3.75 to 4.5 km/sec.
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Although the seismic discontinuity cannot be located effectively

using the surface wave inversion method, we approximated it by

the contour level of 3.75 kmi/sec. We modified the model we

obtained in the previous section by passing a moving average over

a 6 kin range with an increment of 3 km. Fig. 7 is a series of cross

section maps of crustal structure from the North American side to

the North Eurasia side. Location is indicated by the region grid

numbers at the top of the cross-sections. The validity of our

process can be shown by comparing them with known surface

geology. As was pointed out before, the Canada Basin was formed

around upper Jurassic or early Cretaceous time. The oceanic crust

below the Canada Basin is much thicker and older than that below

the Makarov and Eurasia basins (Mair and Forsyth, 1982; Vogt et

al., 1982). In our grid division, the Canada Basin is included in

grid 7, the Makarov Basin in grid 13, and the Eurasia Basin in grid

14. A comparison of the crustal thickness between grid 7, grid 13

and grid 14 in Fig. 7 supports this conclusion. The Barents shelf

offers another example. This area has been carefully studied by

Chan and Mitchell (1985). Their study revealed that the crustal

thickness of the central shelf is about 37 km and it decreases to

only around 23 km in the western shelf. Since the western region

of the shelf is covered by our grids 18 and 21 and the rest of the

shelf is covered by grids 19 and 22, we found by examining our

plot that the crustal thickness below the Barents shelf is more

than 30 km at its eastern side and generally thins to the west. So
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we may say that our result roughly captures the main crustal

structure in the Arctic region. In addition, the overall picture

suggests that the crust is around 20 to 40 km thick in the Arctic

region.

Fig. 8 is a series of cross-sections. The upper mantle

structures are given by velocity contours from the North

American side to the North FEurasia side for all grids except grid 1,

2, 24. Fig. 9 gives similar cross-sections, but perpendicular to

those given in Fig. 8. A close examination of these figures reveals

a thick layer with abnormally high upper mantle velocity located

under grid 13. The same phenomenon has been pointed out

previously frorn the long period group velocity contour map. Fig.

10 shows a vertical profile of the shear wave velocity model for

grid 13. The abnormally high upper mantle velocity is clearly

depicted in this figure. This grid is mainly covered by the Alpha

Ridge, and partly by the Makarov Basin and the Lomonosov Ridge.

Theories have been proposed to explain the origin of the Alpha

Ridge (Coles et al., 1978; Delaurier, 1978; Sweeny eta., 1978a, b;

Vogt et al., 1981b; Taylor etil., 1981; Sweeny etal., 1982). It is

generally agreed that the ridge was once a subsided continental

fragment, and then changed to an extinct oceanic spreading center.

The recovery of microfossils up to 70 m.y. old from the ridge crest

sediments indicates that it ceased spreading by late Cretaceous

and is only a fossil spreading center at present (Sweeny, 1981).

The abnormally high upper mantle velocity resolved from our
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Rayleigh wave dispersion inversion also indicates that this region

no longer possesses the characters of a spreading center.

The Nansen Ridge is included in grids 14 and 18. From the

contour plot in Fig. 9 and shear wave velocity profile in Fig. II, we

can see that below the crustal lid, there is a well-developed low

velocity zone. This suggests the existence of partial melting in this

zone consisting of hot mantle material pushing the ridge apart.

The extensive aeromagnetic investigation by Soviet, Canadian, and

U.S. Navy research groups have found typical sea-floor spreading

type magnetic anomalies in this region (Vogt et at., 1979). It also

suggests that the Nansen Ridge began spreading about 70 m.y. ago

and separated the Lomonosov Ridge from Barents shelf and

formed the Fram Basins.

In the region covered by grids 11 and 16, our result shows a

profound low shear wave velocity structure in the crust and upper

mantle (see Fig. 8 and Fig. 12). In view of the ray path coverage

in this region, our result is probably influenced mainly by the

structure under Queen Elizabeth Island, Ellesmere Island,

Sverdrup Island and Baffin Bay area. It has been suggested that

there is a very long-lived hot spot underneath Sverdrup Island

(Balkwill, 1978). Additionally, seismic studies indicate that it is a

tectonically active region weakened by deviatoric horizontal

extension in a direction perpendicular to the continental margin

(Fujita etla, 1986). We suspect that this region is still undergoing
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a mantle pluming process which may be responsible for its

present low velocity in the upper mantle.

A comparison of grids 7 and 20 shows that the crust and

upper mantle shear wave velocities are quite similar between the

Canada Basin and the eastern part of Greenland (see Fig. 13). Both

grids have a 30 km thick crust, and are underlain by a 50 km

thick upper mantle high shear wave velocity layer. Beneath the

upper mantle high velocity layer, there is a well developed

asthenosphere from the depth of 100 km to 250 km.

In addition, we have taken an average between depths of 5

and 30 km of the shear wave velocity model obtained from the

Rayleigh wave dispersion inversion over all grids. By subtracting

these values from the initial velocities, we have found a difference

of 0.14 km/sec for the depth from 5 to 10 km, a difference of 0.33

km/sec from 10 to 20 km, and a difference of 0.31 km/sec from

20 to 30 km. This difference indicates that the average crustal

shear wave velocity in the Arctic region is much lower than that

of other similar oceanic and stable continental regions of the

world. This is probably the consequence of intensive tectonic

evolution that deformed and fractured this region.

Synthetic Surface Waves

The Gaussian beam method was applied to evaluate the

effects of lateral heterogeneity on surface waves propagating
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across the Arctic region. The initial model was selected using

Jordan's (1981) 5 degree by 5 degree tectonic regionalization and

Rosa's (1986) surface wave velocity data. We replaced this initial

model of the Arctic region by our inversion result to obtain an

improved surface wave velocity model. Using this improved

model, global surface wave ray maps for 20 sec period were

generated for the source of the nuclear test site in Novaya Zemlya.

Synthetic seismograms were also generated for the WWSSN

stations located in the United States with the same wave period.

The program we used for these synthetic calculations was

originally written by Yomogida (1985) and then modified by us.

Figure 14 is a plot of the global surface wave ray map based on

our final model. The synthetic seismograms were plotted in

Figure 15 for the initial model and Figure 16 for the final model.

Remarkable focusing and defocusing effects were found in surface

wave propagations across Arctic for both models. These results

were then compared with the observations shown in Figure 17.

These observed seismograms were obtained for the same seismic

stations and source location. There are some problems in the

calculated seismograms from our final model at stations 15 and

16. This is due to refractive bending of rays at the artificial

boundary created when we put our inversion result into the initial

model. In spite of that, synthetics from our final model give a

better fit to the observed seismograms than that from the initial

model.
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We realize there are large discrepancies between computed

and observed seismograms due to some simplifications made in

our modeling. For example, we used a Gabor wavelet as the

source time function for each beam and calculated its travel time

according to our velocity models for the central period of that

wavelet. In reality, the source time function is much more

complicated than what have been assumed and the wavelet will

disperse along its way from source to stations. This may be one

reason for the differences between computed and observed wave

trains. In our synthetics, we also used a relatively smooth

structure comparing to the real situation. As pointed out by the

result of Chiou and Mitchell (1986) for the Arctic Islands, there

are large variations within a region assumed to be uniform in our

model which is limited by the resolution of our data. Strong

inhomogeneity was also suggested by the beating phenomenons in

our observations. Our velocity models across the North America

were based on Jordan's tectonic regionalization (1981) which gave

additional simplification to the complicated reality. In this sense,

we could not guarantee that our synthetics will reproduce exactly

what are observed. Nevertheless, our models still well reflect the

observed focusing and defocusing phenomenon.

Conclusion

In this study, we have divided the Arctic region into 24

regional grids. According to this division, a detailed Rayleigh
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wave dispersion study of the crust and upper mantle structure in

the Arctic region was carried out. From the structure inversion

results, we mapped the thickness of crustal layer in this region.

Although it is not an detailed description, the general features

have been captured We found that the crustal shear wave

velocity in this region is generally lower than the average shear

wave velocity in the other similar oceanic and stable continental

regions. By comparing the upper mantle shear wave velocity

structures in this area, we found an abnormally high velocity for

grid 13 and a low velocities for grids 11 and 16. Since grid 13

mainly covers the Alpha Ridge, this abnormally high velocity

supports the conclusion that it is now a fossil spreading center.

The low velocities in grids 11 and 16 might imply some kind of

weakening process occurring in this area. The result also shows

that the upper mantle underneath grids 14 and 18 are

characterized by typical oceanic ridge structures. It is consistent

with the tectonic activity of the Nansen Ridge. In addition, we

found that the structure below the Canada Basin is continental in

nature. We also computed Gaussian beam synthetic surface waves

using this inversion result as well as the results of others. The

synthetics based on our inversion result agree with the observed

seismograms better than those for other models. In general, our

results reflect the tectonics in the Arctic region and provide

additional constraints for this area.
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Figure Caption:

Figure 1: Map view of principal geographical features in Arctic.

Figure 2a: Hand digitized seismogram recorded by COP for event

located at epicenter of 51.7 degree north in latitude and

176.1degree east in longitude.

Figure 2h: Group vclocity dispersion curve for the seismogram

',hovn in f'igure la.

Figure 3a: Map of grid divisions used in this study.

Figure 3b: Map of Rayleigh wave ray path coverage used in this

study.

Figure 4a: Example of the resolution matrix plot of our stochastic

inversion result.

Figure 4b: Example of the covariance matrix plot of our stochastic

inversion result.

Figure 5a: Rayleigh wave group velocity contour plot of 19.9

second period from our stochastic inversion result.

Figure 5b: Rayleigh wave group velocity contour plot of 41.6

second period from our stochastic inversion result.

Figure 6: Resolution Kernel of our shear wave velocity starting

model.

Figure 7: A series of cross-section maps of crustal structure from

North American side to North Eurasia side. The numbers

above each section are the grid division number which has

been cut through by this section.
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Figure 8: A series of cross-section maps of upper mantle

structures from North American side to North Eurasia side.

The numbers above each section are the grid division

number which has been cut through by this section.

Figure 9: Cross section maps of upper mantle structures. One cut

through grid 1, 4, 8, 13, 17 and 21, and the other cut

through grid 2, 4, 8, 14, 18, 22 and 24.

Figure 10: Shear wave velocity profile in the vertical direction for

grid 13.

Figure 11: Shear wave velocity profile in the vertical direction for

grid 14 and 18.

Figure 12: Shear wave velocity profile in the vertical direction for

grid 11 and 16.

Figure 13: Shear wave velocity profile in the vertical direction for

grid 7 and 20.

Figure 14: Global surface wave ray map of 20 second period for

our final model.

Figure 15: Synthetic seismograms for the source located at Novaya

Zemlya and the WWSSN stations located in the United States

for the initial model.

Figure 16: Synthetic seismograms for the source located at Novaya

Zemlya and the WWSSN stations located in the United States

for the improved model.

Figure 17: Observed seismograms for the source located at Novaya

Zemlya and the WWSSN stations located in the United States.
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TABLE 1

Station code Latitude Longitude

AKU 65 41 12.0 N 18 06 24.0 W
COL 64 54 00.0 N 147 47 36.0 W
COP 55 41 00.0 N 12 26 00.0 E
ESK 55 19 00.0 N 03 12 18.0 W
GDH 69 15 00.0 N 53 32 00.0 W
KBS 78 55 03.0 N 11 55 26.0 W
KEV 69 45 19.0 N 27 00 24.0 W
KON 59 38 56.7 N 09 35 53.6 E
KTG 70 25 00.0 N 21 59 00.0 W
NUR 60 30 32.4 N 24 39 05.1 E
UME 63 48 54.0 N 20 14 12.0 E
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TABLE 2

Event Data Time Depth Mag. Latitude Longitude

01 06-05-70 10:31 54-30 33.0 5.5 63.37 146.23

02 01-27-79 18:57:55.00 17.0 6.0 54.77 -160.75

03 05-20-79 08:14:0010 71.0 6.5 56.65 -155.27

04 09-01-79 05:27:17.60 69.0 6.4 53.98 -164.80

05 09-14-79 07:28:3200 27.0 5.9 53.66 169.73

06 09-23-79 10:17:20.80 43.0 5.8 52.29 174.03

07 10-18-79 03:35:26.90 62.0 6.0 51.86 177.13

08 11-09-79 13:45:47.60 33.0 5.7 55.64 164.11

09 11-20-79 17:36:01.20 10.0 60 71.19 -07.97

10 03-22-80 10:27:40.10 69.0 5.7 55.71 161.48

11 11-04-80 20:26:00.70 33.0 6.1 53.82 160.74

12 11-21-80 14:56:13.40 53.0 6.0 51.80 -175.86

13 12-14-80 06:27:29.80 24.0 5.6 52.99 171.06

14 02-09-81 12:47:59.00 33.0 5.5 54.97 165.99

15 05-25-81 04:59:57.30 00.0 5.5 68.21 53.66

16 11-08-81 21:56:10.83 33.0 5.6 61.81 153.67

17 05-31-82 10:21:15.00 33.0 6.4 55.14 165.40

18 06-04-82 03:01:04-10 59.0 5.8 51.60 -176.67

19 07-31-82 06:29:15.50 38.0 6.2 51.76 176.14

20 09-12-82 16:50:37.70 33.0 5.5 52.82 -166.95

21 11-21-82 23:27:11.50 35.0 6.2 55.40 163.18

22 02-14-83 08:10:03.60 330 6.0 54.97 -158.76

23 04-03-83 19:14:05.00 116.0 5.6 51.98 179.26

24 06-10-83 02:13:2290 100 5.6 75.53 122.76

25 06-28-83 03:25:17 07 18.5 6.0 60.22 -141.29

26 07-12-83 15:10:0340 37.0 6 1 61.03 -147.29

27 09-07-83 19:22:05 10 45.0 62 60.98 -146.50

28 12-27-83 23:05-57 90 53.0 61 54 19 -16386

29 08-14-84 01:02:08 40 20.0 5.7 61 86 -148.90

30 11-19-84 12:06:37 30 58.0 5.6 51.78 -174.73

31 03-09-85 14:080438 11.6 5.9 6624 -15003

32 09-10-85 01.26,04 42 16.6 57 60.39 168.51

33 10-05-85 15:24022? 10.0 6.5 62.24 -124.27
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TABLE 3

Path Event Station Distance Path Event Station Distance

01 01 UME 5211.56 38 11 NUR 6745.15

02 01 NUR 5413.73 39 12 COP 8065.71

03 02 ESK 7630.21 40 12 KBS 5459.77

04 02 GDH 5055.69 41 12 NUR 7418.73

05 02 KBS 502531 42 17 AKU 6600.48

06 02 KTG 5733.85 43 17 KON 7096.85

07 03 KBS 4765.36 44 18 COP 8082.99

08 03 KTG 5430-03 45 18 KEV 6321.23

09 03 GDH 4703.26 46 18 KON 7657.96

10 03 NUR 7012.89 47 18 UME 7122.46

11 05 GDH 5926.19 48 19 COP 8000.80

12 05 KBS 5291.77 49 19 KBS 5493.92

13 05 KEV 6248.05 50 19 KEV 6396.37

14 05 KTG 6209.05 51 19 KON 7594.14

15 05 NUR 6972.61 52 19 NUR 7299.93

16 05 UME 6713 54 53 22 KEV 5638.59

17 06 COP 7916.39 54 22 NUR 7196.17

18 06 KBS 5438.69 55 23 COL 3180.30

19 06 KEV 6359.71 56 23 COP 7599.88

20 06 NUR 7203.68 57 23 NUR 6812.58

21 07 KEV 6373.66 58 23 KBS 5362.75

22 07 NUR 7306-13 59 23 KEV 6384.26

23 07 UME 7021 38 60 24 GDH 3930.67

24 08 UME 639893 61 24 KON 4263.31

25 09 KON 1511 03 62 24 NUR 3835.72

26 09 ESK 1784 35 63 25 GDH 3913.63

27 09 NUR 1867 69 64 25 KBS 4208.50

28 10 COP 7341 49 65 25 KEV 4683.42

29 10 GDH 5856 45 66 25 KON 6474.45

30 10 KBS 5057 53 67 25 NUR 6560.37

31 10 KEV 6069 82 68 26 AKU 5339.04

32 10 KTG 601009 69 26 COP 6940.29

33 10 NUR 6570 46 70 27 KEV 4763.68

34 11 COL 3069 20 71 27 KON 6481.90

35 11 COP 752562 72 28 KBS 5115.86

36 11 KBS 526627 73 29 KBS 4125.96

37 11 KEV 628269 74 31 COP 6401.60
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